Giancoli 7th Edition textbook cover
Giancoli's Physics: Principles with Applications, 7th Edition
1
Introduction, Measurement, Estimating
Change chapter

1-4: Measurement, Uncertainty, Significant Figures
1-5 and 1-6: Units, Standards, SI, Converting Units
1-7: Order-of-Magnitude Estimating
1-8: Dimensions

Question by Giancoli, Douglas C., Physics: Principles with Applications, 7th Ed., ©2014, Reprinted by permission of Pearson Education Inc., New York.
Problem 39
Q

The smallest meaningful measure of length is called the Planck constant, and is defined in terms of three fundamental constants in nature: the speed of light c=3.00×108 m/sc = 3.00 \times 10^8 \textrm{ m/s}, the gravitational constant G=6.67×1011 m3/kg.s2G = 6.67 \times 10^{-11} \textrm{ m}^3\textrm{/kg.s}^2, and Planck’s constant h=6.63×1034 kg.m2/sh = 6.63 \times 10^{-34} \textrm{ kg.m}^2\textrm{/s}. The Planck length lPl_P is given by the following combination of these three constants: lP=Ghc3l_P = \sqrt{\dfrac{Gh}{c^3}}. Show that the dimensions of lPl_P are length [L], and find the order of magnitude of lPl_P. [Recent theories (Chapters 32 and 33) suggest that the smallest particles (quarks, leptons) are "strings" with lengths on the order of the Planck length, 1035 m10^{-35} \textrm{ m}. These theories also suggest that the "Big Bang," with which the universe is believed to have begun, started from an initial size on the order of the Planck length.]

A
m
Giancoli 7th Edition, Chapter 1, Problem 39 solution video poster
Padlock

In order to watch this solution you need to have a subscription.

VIDEO TRANSCRIPT

This is Giancoli Answers with Mr. Dychko. So Planck length is given as a square root of the gravitational constant times by the Planck's constant divided by the speed of light cubed. The dimensions for capital G are meters cubed over kilogram seconds squared; dimensions for Planck's constant is kilograms times meters squared over seconds and then divide that by the speed of light— meters per second cubed— and take the square root of that whole result. And we are gonna check to see well, I kind of made an assumption here that the Planck length is gonna have dimensions of meters because it's a length but anyway, I suppose we don't know that we are just gonna figure out what this all works out to. It's confusing to have fractions within fractions so let's sort that out by just copying this top part here I just copied this here and then dividing by this fraction is the same as multiplying by its reciprocal so we can have everything on one line. So instead of dividing by meters per second cubed, we are gonna multiply it by seconds cubed over meters cubed and that will make things a little easier to look at. And we have that the meters cubed here cancels with these meters cubed; this kilogram cancels with this kilogram; this seconds squared plus this second makes second cubed in the bottom canceling with this second cubed in the top leaving us with square root meter squared which is meters.

COMMENTS
By yaybooyaahoo on Mon, 8/19/2024 - 8:01 PM

A couple questions. I'm new to this all. How does the cancelling with the square root work? And, as the order of magnitude question answered? Thanks a lot.

By Mr. Dychko on Wed, 8/21/2024 - 8:01 PM

Hi yaybooyaahoo, thank you for the question. When canceling factors that are contained in the square root, the process is the same as if the square root wasn't there. It looks like I unfortunately didn't touch on the order of magnitude question. To answer that I would substitute values into the formula for the Plank length, lP=Ghc3l_P = \sqrt{\dfrac{Gh}{c^3}} and report the power of 10 of the result.

Find us on:

Facebook iconTrustpilot icon
Giancoli Answers, including solutions and videos, is copyright © 2009-2024 Shaun Dychko, Vancouver, BC, Canada. Giancoli Answers is not affiliated with the textbook publisher. Book covers, titles, and author names appear for reference purposes only and are the property of their respective owners. Giancoli Answers is your best source for the 7th and 6th edition Giancoli physics solutions.